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Inexpensive highly permselective heterogeneous ion-exchange membranes are prohibitively highly polariz-
able by a dc current for being used in electrodialysis. According to recent experiments, polarizability of these
membranes may be considerably reduced by casting on their surface a thin layer of crosslinked polyelectrolyte,
slightly charged with the same sign as the membrane’s charge. The present paper is concerned with this effect.
Concentration polarization of a permselective heterogeneous ion-exchange membrane by a dc current is deter-
mined by geometric factors, such as, the typical size of the ion-permeable “gates” at the membrane surface
relative to the separation distance between them and the diffusion layer thickness. The main quantitative
characteristic of polarizability of a heterogeneous membrane is its voltage/currrent curve with its typical
saturation at the limiting current, which is lower than that for a homogeneous membrane. In the present study
we modify the previously developed two-dimensional model of ionic transport in a diffusion layer at a
heterogeneous ion-exchange membrane by including into consideration a homogeneous ion-exchange layer
adjacent to the membrane surface. A numerical solution of the respective boundary value problem shows that,
indeed, adding even a very thin and weakly charged layer of this kind increases the value of the limiting
current, to that of a homogeneous membrane. What differs, for different values of coating parameters, is the
form of the voltage/current curves but not the value of the limiting current, namely: the thinner is the coating
and the lower the fixed charge density in it, the “slower” is the approach of the limiting current. In order to
explain this feature, a simple limiting model of modified membrane is derived from the original two-layer
model. In this limiting model, asymptotically valid for a thin coating, solution of the ionic transport equations
in it is replaced, via a suitable averaging procedure, by a single nonlinear boundary condition for the
membrane/solution interface. Rigorous analysis shows that the aforementioned property of the limiting current
is an exact mathematical feature of this limiting model, when the underlying physical phenomenon is the
funneling of counterions by the charged layer from the impermeable parts of the membrane towards the
“entrance gates.” An approximate analytical solution, developed for this model, compares well with the exact
numerical one.

DOI: 10.1103/PhysRevE.65.041507 PACS nunier82.45-h, 66.10-x, 47.20—k

[. INTRODUCTION that develops, results in a typical nonlinear steady state
voltage/current Y C) dependence, schematically depicted in

Electrodialysis is an ion separatidie.g., desalination Fig. 1. The following three regions are typically distinguish-
process based upon passing a direct electric current througtble in such a curve. The low current Ohmic region | is
an electrolyte solution flanked by a few hundred of micronsfollowed by a plateau with a much lower slopregion II, the
thick charge selectivépermselective polymer films—ion-  limiting current(LC)]. Inflection of theVC curve at the pla-
exchange membranes. Two types of ion-exchange ment€au is followed by the “overlimiting” region Ill. Transition
branes are distinguished—homogeneous and heterogeneous
ones.

Homogeneous membranes, consisting of cross-linked
polyelectrolyte, are prohibitively expensive for their practical
use in a large scale desalination by electrodialysis. On the
other hand, the use for this purpose of inexpensive heteroge-
neous membranes, made of tens of microns sized ion ex-
change beads sealed in a neutral polymer matrix, is largely
impaired by their prohibitively high polarizability compared
to that of a homogeneous membrane. By this we mean that
the differential dc resistance of a heterogeneous membrane '
with the adjacent electrolyte layers increases more rapidly
with the increase of current than that of a homogeneous
membrane. This increase is the essence of concentration po-
larization(CP) in a solution layer adjacent to a charge selec-
tive body (ion-exchange membrane, electrpdender the FIG. 1. Sketch of a typical dimensionless voltage/current curve
passage of a dc current. Electrolyte concentration gradientf a cation-exchange membrane.

Current density, /

Voltage, V
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to the overlimiting regime is accompanied by the appearance x
of a low-frequency excess electric noise. For a recent discus-

sion of the overlimiting phenomena the interested reader is I
referred to Ref[1]. In the current context, we are concerned '
with the classical “underlimiting” CP regions | and II. '

Higher polarizability of a heterogeneous membrane com- &te |
pared to a homogeneous one amounts to a lower LC at the '
former than at the latter. Yet, the recent experiments suggest 5 l

that polarizability of heterogeneous membranes may be con-
siderably reduced by casting on their surface a thin layer of a
cross-linked polyelectrolyt@on-exchange coatingslightly |
charged with the same sign as the membrane’s ch&pe '
Our present theoretical study is concerned with this effect. '
Polarizability of a permselective heterogeneous ion- |
exchange membrane by a dc current is determined by geo- -
metric factors, such as, the typical size of the ion-permeable I l
“gates” at the membrane surface in relation to the separation h y
distance between them and the diffusion layer thickness, as
modeled by an earlier two-dimension@D) theory[3].
. In the 'prese'nt study we modify t.h's theory by mcludmg' to the interface, with the origin at the outside, “bulk” edge of
into consideration a homogeneous ion-exchange layer adjaﬁ e ~ .
cent to the membrane surfat®ec. I). A numerical solution € diffusion layer, and/ parallel to the interface and per-
of the respective boundary value probléBVP) in Sec. III p_endlcular to the strips at it. Thus, ion transfer in t_he dl_ffu-
shows that, indeed, even a very thin and slightly chargedon layer and the coating may be reduced to that in a single
coating of this kind increases the value of the limiting cur-Periodicity cell confined by the membrane/coating interface,
rent to that of a homogeneous membrafvehat differs, for E)ulk edge of the diffusion layer and the two symmetry planes
varying coating's parameters, is the shape ofW@curves Y=0/| (middle of the conductive and insulating strips, re-
but not the value of the LC, namely: the thinner is the coat-SPectively, as illustrated in Fig,)2
ing and the lower the fixed charge density in it, the “slower” In terms of natural dimensionless variables, the two-
is the approach of the limiting current. dimensional Nernst-Planck equations for locally electroneu-
In order to explain this feature, a simple limiting model of tral steady-state electrodiffusion of cations and anions in the
modified membrane is derived from the original two-layerdiffusion layer (0<x<1,0<y<1) read
description(Sec. V). In this limiting model, asymptotically

FIG. 2. Sketch of the problems’ geometry.

valid for a thin coating, solution of the ionic transport equa- V(Ve+cVe)=0, @
tions in it is replaced, via a suitable averaging procedure, by
a single nonlinear boundary condition for the membrane/ V(Ve—cVe)=0. (]

solution interface. Rigorous analysis shows that the afore- . . ) )
mentioned property of the limiting current is an exact math-Hereon the untilded notations stand for the dimensionless

ematical feature of this limiting mode[4], when the Variables, whereas the tilded ones stand for their dimensional
underlying physical phenomenon is the funneling of counte-counterparts. Thus;=C¢/c, is the dimensionless electrolyte
rions by the charged layer from the impermeable parts of theoncentration, where,, employed for scaling, is the bulk
membrane towards the “entrance gates.” Approximate anaeoncentration maintained constant at the outside edge of the
Iﬁical solution, deve_Ioped for this model, compares welldiffusion layer; p=e@/kT is the electric potential is the
with the exact numerical one. charge of protonk is the Boltzmann constant, afdis the
absolute temperaturex=x/1, y=Yy/| are the dimensionless
coordinates.

By addition and subtraction, Eqgl),(2) are conveniently
rewritten as the steady state diffusidraplace and current
continuity equations, respectively,

Il. ELECTRODIFFUSION IN A TWO-DIMENSIONAL
PERIODICITY CELL AT A MODIFIED HETEROGENEOUS
MEMBRANE

Let us consider a diffusion layer of univalent electrolyte
adjacent to a charged coating layer on a flat heterogeneous
membrane. Let the dimensional thickness of the diffusion

layer bed and that of the charged layer Confining ourself
to a two-dimensional case, let us model the heterogeneous
membrane/coating interface as a periodic array of conduct—h
tive, ideally cation permselective and insulating strips of
half-width h and| —h, respectively(herel is the spatial pe-

riod, used below for scalingLet us direct the axis normal V(Vp+pVe)=0, (5)

Ac=0, 3
V(cVe)=0. (4)
Similarly to Eqgs.(1),(2), the electrodiffusion equations for

e interior of ion-exchange coatingd€<x<d+e,0<y
<1) are
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V(Vn—nVe)=0, (6) [The normalization conditioi19) merely specifies the arbi-
trary constant in the definition of the electric potential.
wherep=p/cy, n=n/c, are the cations and anion concen- We point out first that the impermeability of the mem-
trations, respectively, related by the local electroneutralityorane for anions, Eq13), together with Eqs(2),(6) implies
condition
e(xy)=Inc(x,y). (20)
p=n+N. (7)
~ Furthermore, fore=0 (or N=0) the BVP (3)—(20) is re-
HereN=N/c, is the fixed charge concentration in the coat-duced to that for an unmodified heterogeneous membrane.
ing, assumed hereon constant. For a cation-exchange memhis problem has been studied in RES]. The main results

braneN= const>0. of this study may be summarized as follows. For0,
Continuity of the ionic fluxes and the electrochemical po-¢(x,y) is found by separation of variables as

tentials at the coating/electrolyte interface=(5,0<y<1)

imply (xy)=1 I | & 1 sinhkwx o cosk
c(x,y)=1— =x— — >, — ———— sinkwh coskmy.
(px+p‘Px)|x=5+0:(Cx+C(Px)|x=5701 (8) 2 472 (=1 k2 coshkmd
(22)
(nx_n‘Px)|x:($+0:(Cx_C(Px)|x:6—Oi C)
Expression(21) yields the limiting current density at the het-
(INp+¢)x=sr0=(INC+¢)|x= 50 (100 erogeneous membrane, corresponding(t,0)=0, as
(INn—9)|x=s+0=(INC—@)|x=5-0- (13) . 1
|im — _ . (22)

In Egs.(8),(9), equal ionic diffusivities for the solution and ) )

the coating have been assumed for simplicity. >t & e tanhk §sinkah
Simplest relevant boundary conditions at the heteroge-

neous membrane/coating interface<5+¢,0<y<1) per-

tain to the galvanostatic regime of operation, assuming

uniform distribution of current over the cation permeable

portion of the interface. These boundary conditions read

For h<1, 5>1 expression$21),(22) yield, to the leading
order,

—i, 0<y<h,
" =ote™ 12
(Pt Pexb=sre=) o poy<t, (12 .
(M= N@le=5+2=0. 19 M=

Herei is the constant dimensionless current density through

the conductive strip of dimensionless half-width=h/I
def
(I=ih is the average current density through the membrane ’
Boundary condition(13) pertains to impermeability for co-
ions (aniong of both the insulating and conductive portion of
the ideally cation permselective heterogeneous membran
under consideration. For the symmetry plages0,1, 0<x
<J5+¢e we have

Pyly-01=0, (14
yly-01=0, (15
Cyly=01=0, (16)
90y|y:o,1:0- (17

Finally, the boundary conditions at the outer bulk edge of the
diffusion layerx=0, 0<y<1 are

c(0y)=1, (18)
FIG. 3. 2D concentration distribution at a homogeneous mem-
©(0y)=0. (199  branes=1, h=1 (@) I=0; (b) I=1{"=(2/8)(=2).
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some results for the unmodified membrane, starting in Fig

with a two-dimensional concentration distribution in the dif-

Interface concentration profiles—, homogeneous

fusion layer at a homogeneous membrane for zero and lim- FIG. 5.
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iting current, respectively. In Fig. 4 the same distributions areamembrane if
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with a thicker diffusion layere=0.1, N=0,

=0

0.1, N

|Iim:

1.19. (b) Charge coating:

2. (c) Homogeneous membrare=0.

:|Iim

=2.

o=

respectively, of the bringing the limiting current to a value
typical of a homogeneous membrane. This is illustrated in

1.19, ¢

1 [Figs. Ga) and

7(a), unmodified heterogeneous membrah®’

=0, h=05, 6

0.1, N

Figs. 6-7, fore

, €¢=0.1, h=0.01, h

0
1 [Figs. 6c) and 7c), homogeneous membrane,

2.0].

2

im_

1 [Figs. §b) and 7b), modified

0.1, N=0.01,h=0.5, 6=

heterogeneous membrank

1, 6=

I lim

This effect is analyzed in the next section.

LIMITING “ION-EXCHANGE FUNNEL" MODEL

We wish to analyze the effect described in the previous
section, employing the fact that it takes place even for a very
thin coating. More precisely, we wish to derive from the full

two-layer formulation(3)—(20) a simple limiting model, as-

ymptotically valid fore —0,

N—oo, such that their product

def

(25

—eN=0(1)

B
er ig’lemains finite. For this purpose we first rewrite E($),(6)

form in terms of total charge carriers

def

(26)

p+n.

(o

the closer the value of the

Substitution of Eq.(26) into the sum of Eqgs(5) and (6)

Ids, using Eqs(6), (7), and(20),

(27)

=0, 6<x<d+e, O<y<],

|

Vo
o—N

V(V0'+N
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FIG. 6. Interface concentration profiles for a coated membrané
at the limiting current(a),(b) parameters as in Figs(d and Jb),
Against this background, the striking effect of coating yie

consists of a virtually complete flattening of the concentra-

geneous membrane. This is also illustrated in Fig. 5 by th&oncentratioro, defined as
tion distribution and of the interface concentration profile

respective interface concentration profiles at the limiting cur-

the closer the concentration distribution is to that at a homol" & more convenient
rent.[For a given heterogeneity], the thicker the diffusion

layer is(the largers is), the flatter the interface concentration
already for a minor coating layer thickness and charge, and,

nesses. It is observed that the thicker the diffusion lay
limiting current is to that for a homogeneous membrane.

respectively,(c) homogeneous membrane at the limiting current

(6=1h=1).
profile is and, correspondingly,
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whereas the continuity conditior8),(9) and(10),(11) yield,
respectively,

(28)

Ox
oy t+N o— N) |x:6+0:2Cx|x=5—01

[0?(8+0y)—N?]=4c%(5—0y). (29

On the other hand, substitution of E@6) into the sum of
boundary condition$12) and(13) yields, using Eqs(7) and

(20),
: )
o—N

Integration of Eq.27) with respect tax over the intervals
<Xx< d+ ¢ yields, to the leading order in, using Eqs(28)—
(30)

—i, 0<y<h,

:‘ 0, h<y<1 0

oy tN

X=6+te

i, 0<y<h,
vay_20x|x:6: 0, h<y<1. (31
Here, 8 is defined by Eq(25) and
def, 5’ 5,
v(y)=U(Ny)—1+In(0(Ny)—l>. 32)

Egs.(29),(32) yield

[ 4 [ a4
v(y)=\/1+ @cz(é,y)—lﬂn( 1+ @cz(é,y)

1
N2

—

2 2
—1) =InW+2 Inc(38,y)+ mc'L’(é)‘,y)Jro(
Equation(31) is obtained using the relations
S+e
J' w(x,y)dx=zv(y)+O0(s?),
S5

where

a(X,y)
W:

N

a(X,y)
)

—1+In(

Thus,

cy(d,y) 4
vyyzz( cy(é,y) )y+ nzle(ayiey(6.y)ly

[ ey(8y) 1
_2( c(5.y) )fo(ﬁf)' 39
Substitution of Eq(33) into Eq. (31) finally yields
cy(8,y) [ir2, o<y<h,
(c(ﬁ,y))y_ (9 )_[ 0, h<y<l. 34

PHYSICAL REVIEW E 65 041507

Boundary condition(34) together with the Laplace equation
(3) for c(x,y), the symmetry condition§14)—(17), and the
boundary conditior{18) form the limiting asymptotic model

of ionic transport in the diffusion layer at a modified hetero-
geneous membrane. In this model, the entire ionic transport
in the coating is reduced to a single nonlinear boundary con-
dition (34). For convenience we reproduce below the respec-
tive BVP, which reads

0<x<4, 0<y<l, Ac=0, (35
x=0, 0<y<1, c(0y)=1, (36)
x=4, 0<y<1, B(iy((g';/)))y—cx(é,y)
i/2, 0<y<h,
:[o, h<y<1, 37
0<x<é, y=0,1, ¢yly—0,=0, (38)

The BVP(35—(38) was rigorously analyzed in Reff4] and

was shown to be well posed, that is to possess a unique
classical solution. Moreover, it was shown that for any finite
value of the “funneling” parametep, the value of the lim-
iting current in the system is &/ that is, the one for a ho-
mogeneous membrane. This result is easily recovered by in-
spection. Indeed, the limiting current is that current value for
which the lowest interface concentrationxat 5, y=0 van-
ishes. On the other hand, by inspection, the flat one-
dimensional concentration distribution,

X
c(x,y)=1—5, (39
with an identically vanishing interface concentrationat
= is a solution to Eqs(35)—(38) (unique by Ref[4]) cor-

def
responding to the limiting current™=i"mh=2/5. Given
this result for any finiteB, the natural question to be ad-
dressed is how does, for a vanishiggthe limiting current
acquire its low “heterogeneous” value. The answer to this
guestion is provided by the following asymptotic reasoning
valid for B—0 and based too upon the analysis of Ré{.
Let Ii™ be the limiting current at the unmodified heteroge-
neous membrane. F@—0 andI<I{", the concentration
distribution at a modified membrane is identical to that at an
unmodified one. FoB—0 andl>1{", the interfacex=§ is
split, by some point/y(1), into the following two parts. To
the left of yo(l) the interface concentration essentially van-
ishes whereas, to the right g§(1), the surface modification
is not sensed. The position of the “interface free boundary”
Yo(l) is determined from the current conservation in the sys-
tem. The BVR35)—(38) is asymptotically reduced to that for
an unmodified heterogeneous membranelfsi /™ and to
the following interface free boundary problem ﬂo‘PI',Lm:

0<x< 4§, 0<y<l1, Ac=0, (40)

041507-6
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2.4

x=0, 0<y<1, c(0y)=1, (41)

x=38, 0<y<yy(l), c(8,y)=0, (42

i/2, 0<y<h,

0, h<y<1,
(43

x=36, Yo(l)<y<1l, cx(dy)=~—

0<x<4, y=0,1, ¢cy|y—01=0, (44)

def
=ih).

1 1o
J c(oy)dy=1-—(l (49)
0

Here Eq.(45) is the current conservation condition obtained
by integration of Eq.(40) over the range &y<1, taking
into account Eqs(38), and integrating the resulting equation
twice over the range €x< §, taking into account Eq%36),
(37). Equation(45) is employed for determination ofy(1).
With | increasing in the ranglé']m<| <218, yo(l) monotoni-
cally increases, until reaches 1 fbr2/5 (limiting current
through a homogeneous membrane

The interface free boundary problef#0),(45) represents FIG. 8. Calculated/C curves of a modified membrant_e._—_ -,
the leading order outer limiting problem of the boundarytWo-layer model £=0.1. N=0.01,h=0.5, §=1); —, limiting
singular perturbation probleii85)—(38). In order to be able funnel” model (4=0.001,h=0.5, =1).
to recover the full voltage/current cur@nd not only the
value of the limiting current and the concentration whereverExplicit integration of Eq.(48), with boundary conditions
it is not too low one has to consider the respective inner
problem, namely, the one determining the low interface con-

0.8
|

100 200

v

300 400

centrationc(d,y)=0(1) in the interval 6<y< y(l), ap- uy(0)=0, (52)
proximated in the outer problem by a sheer zero. When this

low inner concentratioe(8,y) is found, the voltag®/ in the

system may be identified, in accordance with E20) as u(yo) =0, (52

Inc(8,0). The inner interface concentratiafs,y) is found
from the free boundary conditiof87), rewritten as

i/2, 0<y<h,

0, h<y<1. (46)

BlIn¢( 5vy)]yy_ Cx(8,y)=

Here B Inc=0(1) [Inc=0(1/B)] and c,(4,y)=0(1) is
taken from the solution of the outer problg@d0)—(45).

As a convenient first approximatiofsee the Appendix
one may use foc,(4,y) the expression

1
Cx(8,y)=— 5 (47)

Substitution of Eq(47) into (46) yields forc(4,y) a simple
differential equation

Buyy: a(i,y), (48)
where
def
u(y)=c(sy), (49)
def 1 (i/2, O<y<h,
*=737 0, h<y<1. 0

following, respectively, from the first of symmetry condi-
tions (44) and the equality l8(8,yy)=0(1/B), yields u
=u(y,i,B). This, in turn, yields an analytic expression for
the voltage/current curve, given by the relation

V

—u(0,i,B). (53

(See the Appendix for an explicit formujaln Fig. 8 we
compare &/ C curve recovered from a numerical solution of
the full two-layer formulation(3)—(20) with that obtained
from a much simpler, but still numerical, solution of the
limiting “funnel” problem (40)—(45). (For the respective 2D
concentration distributions see Figs. 7 anglf.Fig. 10 we
compare this lattetvVC curve with that obtained from an
approximate analytic solution of the interface free boundary
problem(40)—(53).

IV. DISCUSSION: PHYSICAL MECHANISM
OF ION-EXCHANGE FUNNELING

Our message in this paper to a general physical audience
interested in interface transport is not, of course, the possi-
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termined by the geometry of alternating ion conductive and
insulating regions at the membrane’s surface in relation to
the width of the depleted diffusion layer of the surrounding

electrolyte. The major quantitative characteristic of this dc

concentration polarizability of a heterogeneous membrane is
the value of the limiting current through it compared to that

through a homogeneous membrane. Remarkably, a very thin
coating of a heterogeneous membrane by a slightly charged
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The ac or infinitesimal dc current resistance of a hetero-

geneous electrodialysis membrane is determined by percole

FIG. 9. 2D concentration distribution in the limitindunnel)
tion of the ion-exchange beads in it's bulk. At the same time,
is dominated by concentration polarization. This latter is de-mate formula(A6).

bility to reduce concentration polarization at a heterogeneous

membrane by a polyelectrolyte coating of the latter. Such a
ently very simple, singularly perturbed nonlinear boundaryy,

message would be more appropriate for a membranologica
journal. The message is that a very classical kinematic prob
lem of two-dimensional steady state electrodiffusion onto a
nonuniform surface from a region with a peculiar geometry
may be reduced, through a suitable asymptotic treatment, t
an even more classical simple diffusion problem in a region
with a trivial geometry. In this latter problem all peculiarities

condition (37). Singularity lies in the fact that an arbitrarily

nonlinear mechanism, a large effect upon the ionic transpor
in terms of the limiting current—a situation reminiscent of

the viscous drag resolution of the D’Alambert paradox in the
body. Having said this, let us recapitulate the major facts

of the original problem are concentrated in a single, appar-
small perturbation of this kind yields, through a particular
high Reynolds number potential flow around a symmetric
referred to above and throughout this paper and close with ¢
semantic comment.

model. (a) B

the finite dc current resistance of a heterogeneous membrane FIG. 11. yo(l) plot. — — —, numerical solution;
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homogeneous ion-exchange layer brings the limiting current ACKNOWLEDGMENT
to a value typical of a homogeneous membrane. In this paper
we termed this effect “ion-exchange funneling.” We wish to
comment now on this term.

The lateral counter-ion flux along the membrane surface
from the insulating to the conductive part of itjis = —p, APPENDIX: APPROXIMATE SOLUTION OF THE

e, (or, respectively,j ,=—c,—Cg, for the solution  LIMITING (FUNNEL) PROBLEM FOR SMALL VALUES
layer adjacent to a heterogeneous membrane OF FUNNELING PARAMETER

Why is the counterion transport in the coating S0 much  gejow we outline the construction of an approximate so-
more effective than t_hat in the solution layer of a similar tion to the limiting problem(35)—(38), and of the respec-
thickness? Let us point out first that, by E¢80),(29), the e voltage/current curve, valid for small values of the fun-
counter-ion gradlent in the coating, the concentration gr?‘d'heling parameteB. We start with an approximate solution to
ent near the interface, and the elect_rlc potential gradlenghe mixed limiting BVP(40)—(44) (with a fixedy,) provided
therein are of the same order of magnitude: by the first approximation of the Schwarz alternating proce-

Ipo]~ ey~ @y dure[5]. For this purpose, the Laplace equatid) is first

e y solved in the “full” domain 0<x< 8, 0<y<1 with bound-

On the other hand, fat—0, N—, so that3=eN=const  ary conditions(41),(43),(44) and condition(42) applied on
=0(1), the migrational counterion flux component in the the entire interfacex=6, 0<y<1. This yields the one-
coating will beN times larger than any other flux component dimensional “flat” concentration distributiof89). Next, Eq.
(either diffusional one in the coating or diffusional and elec-(40) is solved by separation of variables in the “right” sub-
tromigrational one in a solution layer near an unmodifiedregion 0<x<4, y,<y<1 with boundary condition$41),
heterogeneous membranghus, a lateral concentration drop (43 and[see Eqs(39),(44)]
from the insulating to a conductive part of a heterogeneous @)
membrane surface produces a respective lateral electric po- ¢y (x,1)=0, (A1)
tential drop which, in turn, yields a major electromigrational
counterion flow towards the “ionic gates” to the membrane.
This is reminiscent of a funnel conducting the liquid col-
lected at its surface to the orifice: the analogy that suggested

We are grateful to Professor Ora Kedem for introducing
us to the modified heterogeneous membranes problem.

c@(x,yo)=1- (A2)

(_s .

the term “ion-exchange funneling.” The solution reads
c@(x,y)
(1_§+ s 8(1-yo) 1 ”in(wn[y_y0]>sinl'( X )
8 n-15%..., mn2s cosHomn/[2(1-yo)]} | 2(1-yo) 2(1-yo)

for 1 suchthatyy(l)=h,

X 2 8(l_y0)

0 n=135..., 2n?

1 i mn(h—yy)
5 2\ %21y
for 1 such thatyq(l) e(0h).

1 - (wn[y—yo]> . r( TNX )
cost{omn/[2(1—yo) 11>\ 2(1—yo) /> 2(1—yo)

\
(A3)

Substitutingx= ¢ into Eq. (A3) we find

c@(s,y)
8(1-Yo) ._( X ) .(wn[y—yo])
tan sin for 1 such thatyq(l)=h,
i s 2 20—ye) ) M 20y, Yoll)
8(1-yg)|1l i mn(h—yo) mnx | [7nly—Yo]
n=1,3,5,...,—772n2 5 2 —0002(1_y0) tan 2(1=yy) sin| 2(1=yo) for 1 such thatyy(l) e (0h).

(A4)

041507-9
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Substitution of Eq(A4) into Eq. (45) yields

16(1—yo)?, )

tanh =1—— for | suchthatyy(l)=h,
T B TE BV Yol
16(1—yg)2[1 i mn(h—yp) mné |\ 16
n:1’32’5“'.’w E_E 1- OSW tan 2(1—_y0) —1—? for | SUChthatyO(l)E(O,h). (AS)

Equation(A5) yields yy(l) in the form

( 1-—\/7é 1——|5 for | Ild:f—2
=
4 2] s

16
1——3(1—h)21
w

_ 2 _ 2 2
O P KL S i YRR (R (1)
7 h 72\ h 2 7h 738 mh
16 | '
| 1
\ /(%—%) for |(|)m$|<|

In Fig. 11, thus calculategy(1) is compared with that found numerically from a numerical solution of the interface free
boundary problent40)—(45). The construction of approximate voltage/current curve is completed by employing the calculated
yo(l) in solution of BVP(48)—(52), yielding, in accordance with E{53),

|2 hyo(l ) _1 h)2 for 1=11
== — = —=(yo— or I=11,
V=~ —
25 2 (A7)
yolh (1 2 lim 1
——=| for Iy '=I=I
2 \h ¢
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