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Ion-exchange funneling in thin-film coating modification of heterogeneous
electrodialysis membranes

Isaak Rubinstein, Boris Zaltzman, and Tamara Pundik
Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel

~Received 15 October 2001; revised manuscript received 6 December 2001; published 8 April 2002!

Inexpensive highly permselective heterogeneous ion-exchange membranes are prohibitively highly polariz-
able by a dc current for being used in electrodialysis. According to recent experiments, polarizability of these
membranes may be considerably reduced by casting on their surface a thin layer of crosslinked polyelectrolyte,
slightly charged with the same sign as the membrane’s charge. The present paper is concerned with this effect.
Concentration polarization of a permselective heterogeneous ion-exchange membrane by a dc current is deter-
mined by geometric factors, such as, the typical size of the ion-permeable ‘‘gates’’ at the membrane surface
relative to the separation distance between them and the diffusion layer thickness. The main quantitative
characteristic of polarizability of a heterogeneous membrane is its voltage/currrent curve with its typical
saturation at the limiting current, which is lower than that for a homogeneous membrane. In the present study
we modify the previously developed two-dimensional model of ionic transport in a diffusion layer at a
heterogeneous ion-exchange membrane by including into consideration a homogeneous ion-exchange layer
adjacent to the membrane surface. A numerical solution of the respective boundary value problem shows that,
indeed, adding even a very thin and weakly charged layer of this kind increases the value of the limiting
current, to that of a homogeneous membrane. What differs, for different values of coating parameters, is the
form of the voltage/current curves but not the value of the limiting current, namely: the thinner is the coating
and the lower the fixed charge density in it, the ‘‘slower’’ is the approach of the limiting current. In order to
explain this feature, a simple limiting model of modified membrane is derived from the original two-layer
model. In this limiting model, asymptotically valid for a thin coating, solution of the ionic transport equations
in it is replaced, via a suitable averaging procedure, by a single nonlinear boundary condition for the
membrane/solution interface. Rigorous analysis shows that the aforementioned property of the limiting current
is an exact mathematical feature of this limiting model, when the underlying physical phenomenon is the
funneling of counterions by the charged layer from the impermeable parts of the membrane towards the
‘‘entrance gates.’’ An approximate analytical solution, developed for this model, compares well with the exact
numerical one.

DOI: 10.1103/PhysRevE.65.041507 PACS number~s!: 82.45.2h, 66.10.2x, 47.20.2k
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I. INTRODUCTION

Electrodialysis is an ion separation~e.g., desalination!
process based upon passing a direct electric current thro
an electrolyte solution flanked by a few hundred of micro
thick charge selective~permselective! polymer films—ion-
exchange membranes. Two types of ion-exchange m
branes are distinguished—homogeneous and heterogen
ones.

Homogeneous membranes, consisting of cross-lin
polyelectrolyte, are prohibitively expensive for their practic
use in a large scale desalination by electrodialysis. On
other hand, the use for this purpose of inexpensive heter
neous membranes, made of tens of microns sized ion
change beads sealed in a neutral polymer matrix, is larg
impaired by their prohibitively high polarizability compare
to that of a homogeneous membrane. By this we mean
the differential dc resistance of a heterogeneous memb
with the adjacent electrolyte layers increases more rap
with the increase of current than that of a homogene
membrane. This increase is the essence of concentration
larization~CP! in a solution layer adjacent to a charge sele
tive body ~ion-exchange membrane, electrode! under the
passage of a dc current. Electrolyte concentration grad
1063-651X/2002/65~4!/041507~10!/$20.00 65 0415
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that develops, results in a typical nonlinear steady s
voltage/current (VC) dependence, schematically depicted
Fig. 1. The following three regions are typically distinguis
able in such a curve. The low current Ohmic region I
followed by a plateau with a much lower slope@region II, the
limiting current~LC!#. Inflection of theVC curve at the pla-
teau is followed by the ‘‘overlimiting’’ region III. Transition

FIG. 1. Sketch of a typical dimensionless voltage/current cu
of a cation-exchange membrane.
©2002 The American Physical Society07-1
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to the overlimiting regime is accompanied by the appeara
of a low-frequency excess electric noise. For a recent dis
sion of the overlimiting phenomena the interested reade
referred to Ref.@1#. In the current context, we are concern
with the classical ‘‘underlimiting’’ CP regions I and II.

Higher polarizability of a heterogeneous membrane co
pared to a homogeneous one amounts to a lower LC at
former than at the latter. Yet, the recent experiments sug
that polarizability of heterogeneous membranes may be c
siderably reduced by casting on their surface a thin layer
cross-linked polyelectrolyte~ion-exchange coating!, slightly
charged with the same sign as the membrane’s charge@2#.
Our present theoretical study is concerned with this effec

Polarizability of a permselective heterogeneous io
exchange membrane by a dc current is determined by
metric factors, such as, the typical size of the ion-permea
‘‘gates’’ at the membrane surface in relation to the separa
distance between them and the diffusion layer thickness
modeled by an earlier two-dimensional~2D! theory @3#.

In the present study we modify this theory by includin
into consideration a homogeneous ion-exchange layer a
cent to the membrane surface~Sec. II!. A numerical solution
of the respective boundary value problem~BVP! in Sec. III
shows that, indeed, even a very thin and slightly char
coating of this kind increases the value of the limiting cu
rent to that of a homogeneous membrane.~What differs, for
varying coating’s parameters, is the shape of theVC curves
but not the value of the LC, namely: the thinner is the co
ing and the lower the fixed charge density in it, the ‘‘slowe
is the approach of the limiting current.!

In order to explain this feature, a simple limiting model
modified membrane is derived from the original two-lay
description~Sec. IV!. In this limiting model, asymptotically
valid for a thin coating, solution of the ionic transport equ
tions in it is replaced, via a suitable averaging procedure
a single nonlinear boundary condition for the membra
solution interface. Rigorous analysis shows that the afo
mentioned property of the limiting current is an exact ma
ematical feature of this limiting model@4#, when the
underlying physical phenomenon is the funneling of coun
rions by the charged layer from the impermeable parts of
membrane towards the ‘‘entrance gates.’’ Approximate a
lytical solution, developed for this model, compares w
with the exact numerical one.

II. ELECTRODIFFUSION IN A TWO-DIMENSIONAL
PERIODICITY CELL AT A MODIFIED HETEROGENEOUS

MEMBRANE

Let us consider a diffusion layer of univalent electroly
adjacent to a charged coating layer on a flat heterogen
membrane. Let the dimensional thickness of the diffus
layer bed̃ and that of the charged layer«̃. Confining ourself
to a two-dimensional case, let us model the heterogene
membrane/coating interface as a periodic array of cond
tive, ideally cation permselective and insulating strips
half-width h̃ and l 2h̃, respectively~herel is the spatial pe-
riod, used below for scaling!. Let us direct thex̃ axis normal
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to the interface, with the origin at the outside, ‘‘bulk’’ edge
the diffusion layer, andỹ parallel to the interface and per
pendicular to the strips at it. Thus, ion transfer in the diff
sion layer and the coating may be reduced to that in a sin
periodicity cell confined by the membrane/coating interfa
bulk edge of the diffusion layer and the two symmetry plan
ỹ50,l ~middle of the conductive and insulating strips, r
spectively, as illustrated in Fig. 2!.

In terms of natural dimensionless variables, the tw
dimensional Nernst-Planck equations for locally electron
tral steady-state electrodiffusion of cations and anions in
diffusion layer (0,x,1,0,y,1) read

¹~¹c1c¹w!50, ~1!

¹~¹c2c¹w!50. ~2!

Hereon the untilded notations stand for the dimensionl
variables, whereas the tilded ones stand for their dimensio
counterparts. Thus,c5 c̃/c0 is the dimensionless electrolyt
concentration, wherec0, employed for scaling, is the bulk
concentration maintained constant at the outside edge o
diffusion layer;w5ew̃/kT is the electric potential (e is the
charge of proton,k is the Boltzmann constant, andT is the
absolute temperature!, x5 x̃/ l , y5 ỹ/ l are the dimensionles
coordinates.

By addition and subtraction, Eqs.~1!,~2! are conveniently
rewritten as the steady state diffusion~Laplace! and current
continuity equations, respectively,

Dc50, ~3!

¹~c¹w!50. ~4!

Similarly to Eqs.~1!,~2!, the electrodiffusion equations fo
the interior of ion-exchange coating (d,x,d1«,0,y
,1) are

¹~¹p1p¹w!50, ~5!

FIG. 2. Sketch of the problems’ geometry.
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¹~¹n2n¹w!50, ~6!

wherep5 p̃/c0 , n5ñ/c0 are the cations and anion conce
trations, respectively, related by the local electroneutra
condition

p5n1N. ~7!

HereN5Ñ/c0 is the fixed charge concentration in the co
ing, assumed hereon constant. For a cation-exchange m
braneN5const.0.

Continuity of the ionic fluxes and the electrochemical p
tentials at the coating/electrolyte interface (x5d,0,y,1)
imply

~px1pwx!ux5d105~cx1cwx!ux5d20 , ~8!

~nx2nwx!ux5d105~cx2cwx!ux5d20 , ~9!

~ ln p1w!ux5d105~ ln c1w!ux5d20 , ~10!

~ ln n2w!ux5d105~ ln c2w!ux5d20 . ~11!

In Eqs. ~8!,~9!, equal ionic diffusivities for the solution an
the coating have been assumed for simplicity.

Simplest relevant boundary conditions at the hetero
neous membrane/coating interface (x5d1«,0,y,1) per-
tain to the galvanostatic regime of operation, assumin
uniform distribution of current over the cation permeab
portion of the interface. These boundary conditions read

~px1pwx!ux5d1«5H 2 i , 0,y,h,

0, h,y,1,
~12!

~nx2nwx!ux5d1«50. ~13!

Here i is the constant dimensionless current density thro
the conductive strip of dimensionless half-widthh5h̃/ l

(I 5
def

ih is the average current density through the membra!.
Boundary condition~13! pertains to impermeability for co
ions~anions! of both the insulating and conductive portion
the ideally cation permselective heterogeneous memb
under consideration. For the symmetry planesy50,1, 0,x
,d1« we have

pyuy50,150, ~14!

nyuy50,150, ~15!

cyuy50,150, ~16!

wyuy50,150. ~17!

Finally, the boundary conditions at the outer bulk edge of
diffusion layerx50, 0,y,1 are

c~0,y!51, ~18!

w~0,y!50. ~19!
04150
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@The normalization condition~19! merely specifies the arbi
trary constant in the definition of the electric potential.#

We point out first that the impermeability of the mem
brane for anions, Eq.~13!, together with Eqs.~2!,~6! implies

w~x,y!5 ln c~x,y!. ~20!

Furthermore, for«50 ~or N50) the BVP ~3!–~20! is re-
duced to that for an unmodified heterogeneous membr
This problem has been studied in Ref.@3#. The main results
of this study may be summarized as follows. For«50,
c(x,y) is found by separation of variables as

c~x,y!512
I

2
x2

I

4p2 (
k51

`
1

k2

sinhkpx

coshkpd
sinkph coskpy.

~21!

Expression~21! yields the limiting current density at the he
erogeneous membrane, corresponding toc(d,0)50, as

I lim5
1

d

2
1

1

p2h
(
k51

`
1

k2
tanhkpd sinkph

. ~22!

For h!1, d@1 expressions~21!,~22! yield, to the leading
order,

FIG. 3. 2D concentration distribution at a homogeneous me
braned51, h51 ~a! I 50; ~b! I 5I h

lim5(2/d)(52).
7-3
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FIG. 4. 2D concentration distribution at a he
erogeneous membrane~a! d51, h50.1, I 5I lim

50.84 (I h
lim52/d52); ~b! d55, h50.1, I 5I lim

50.314 (I h
lim52/d50.4).
e

ith
g.
if-
lim
ar
s

-

c0~x,y!512
I

2
x1

I

2p
ln

122ep(x2d)cospy1e2p(x2d)

p2~d2x!21p2y2

1
I

4p F y

h
ln

~d2x!21~h1y!2

~d2x!21~h2y!2
1 ln$@~d2x!2

1~h2y!2#@~d2x!21~h1y!2#%12
d2x

h

3S arctan
h2y

d2x
1arctan

h1y

d2xD14~ ln p21!G ,

~23!

I 0
lim5

1

d/22
1

p
@ ln~ph!21#

. ~24!

The full BVP ~3!–~20! has been solved numerically by finit
differences. The results are illustrated in Figs. 3–7.

To set the background, we begin in Figs. 3 and 4 w
some results for the unmodified membrane, starting in Fi
with a two-dimensional concentration distribution in the d
fusion layer at a homogeneous membrane for zero and
iting current, respectively. In Fig. 4 the same distributions
presented for the unmodified heterogeneous membrane
the limiting current for two different diffusion layer thick
04150
3

-
e
at

FIG. 5. Interface concentration profiles. , homogeneous
membrane (h51); , heterogeneous membrane (h50.1). ~a!
d51; , I 5I h

lim52; , I 5I lim50.84; ~b! d55; ,
I 5I h

lim50.4, I 5I lim50.314.
7-4
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ION-EXCHANGE FUNNELING IN THIN-FILM COATING . . . PHYSICAL REVIEW E65 041507
nesses. It is observed that the thicker the diffusion layer
the closer the concentration distribution is to that at a hom
geneous membrane. This is also illustrated in Fig. 5 by
respective interface concentration profiles at the limiting c
rent.@For a given heterogeneity (h), the thicker the diffusion
layer is~the largerd is!, the flatter the interface concentratio
profile is and, correspondingly, the closer the value of
limiting current is to that for a homogeneous membrane.#

Against this background, the striking effect of coatin
consists of a virtually complete flattening of the concent
tion distribution and of the interface concentration profi
already for a minor coating layer thickness and charge, a

FIG. 6. Interface concentration profiles for a coated membr
at the limiting current.~a!,~b! parameters as in Figs. 5~a! and 5~b!,
respectively,~c! homogeneous membrane at the limiting curre
(d51,h51).
04150
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respectively, of the bringing the limiting current to a valu
typical of a homogeneous membrane. This is illustrated
Figs. 6–7, for«50.1, N50, h50.5, d51 @Figs. 6~a! and
7~a!, unmodified heterogeneous membrane,I lim51.19#, «
50.1, N50.01, h50.5, d51 @Figs. 6~b! and 7~b!, modified
heterogeneous membrane,I lim52.0#, «50.1, h50.01, h
51, d51 @Figs. 6~c! and 7~c!, homogeneous membran
I lim52.0#. This effect is analyzed in the next section.

III. LIMITING ‘‘ION-EXCHANGE FUNNEL’’ MODEL

We wish to analyze the effect described in the previo
section, employing the fact that it takes place even for a v
thin coating. More precisely, we wish to derive from the fu
two-layer formulation~3!–~20! a simple limiting model, as-
ymptotically valid for«→0, N→`, such that their product

b5
def

«N5O~1! ~25!

remains finite. For this purpose we first rewrite Eqs.~5!,~6!
in a more convenient form in terms of total charge carri
concentrations, defined as

s5
def

p1n. ~26!

Substitution of Eq.~26! into the sum of Eqs.~5! and ~6!
yields, using Eqs.~6!, ~7!, and~20!,

¹S ¹s1N
¹s

s2ND50, d,x,d1«, 0,y,1, ~27!

e

t

FIG. 7. 2D concentration distribution at a modified membra
~a! Zero coating charge, i.e., unmodified heterogeneous memb
with a thicker diffusion layer«50.1, N50, h50.5, d51, I
5I lim51.19. ~b! Charge coating«50.1, N50.01, h50.5, d51,
I 5I lim52. ~c! Homogeneous membrane«50.1, N50.01, h51,
d51, I lim52.
7-5
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whereas the continuity conditions~8!,~9! and~10!,~11! yield,
respectively,

S sx1N
sx

s2ND ux5d1052cxux5d20 , ~28!

@s2~d10,y!2N2#54c2~d20,y!. ~29!

On the other hand, substitution of Eq.~26! into the sum of
boundary conditions~12! and~13! yields, using Eqs.~7! and
~20!,

S sx1N
sx

s2ND U
x5d1«

5H 2 i , 0,y,h,

0, h,y,1.
~30!

Integration of Eq.~27! with respect tox over the intervald
,x,d1« yields, to the leading order in«, using Eqs.~28!–
~30!

bvyy22cxux5d5H i , 0,y,h,

0, h,y,1.
~31!

Here,b is defined by Eq.~25! and

v~y!5
defs~d,y!

N
211 lnS s~d,y!

N
21D . ~32!

Eqs.~29!,~32! yield

v~y!5A11
4

N2
c2~d,y!211 lnSA11

4

N2
c2~d,y!

21D 5 ln
2

N2 12 lnc~d,y!1
2

N2 c2~d,y!1oS 1

N2D .

Equation~31! is obtained using the relations

E
d

d1«

w~x,y!dx5«v~y!1O~«2!,

where

w5
s~x,y!

N
211 lnS s~x,y!

N
21D .

Thus,

vyy52S cy~d,y!

c~d,y! D
y

1
4

N2 @c~d,y!cy~d,y!#y

52S cy~d,y!

c~d,y! D
y

1OS 1

N2D . ~33!

Substitution of Eq.~33! into Eq. ~31! finally yields

bS cy~d,y!

c~d,y! D
y

2cx~d,y!5H i /2, 0,y,h,

0, h,y,1.
~34!
04150
Boundary condition~34! together with the Laplace equatio
~3! for c(x,y), the symmetry conditions~14!–~17!, and the
boundary condition~18! form the limiting asymptotic mode
of ionic transport in the diffusion layer at a modified heter
geneous membrane. In this model, the entire ionic trans
in the coating is reduced to a single nonlinear boundary c
dition ~34!. For convenience we reproduce below the resp
tive BVP, which reads

0,x,d, 0,y,1, Dc50, ~35!

x50, 0,y,1, c~0,y!51, ~36!

x5d, 0,y,1, bS cy~d,y!

c~d,y! D
y

2cx~d,y!

5H i /2, 0,y,h,

0, h,y,1,
~37!

0,x,d, y50,1, cyuy50,150. ~38!

The BVP~35!–~38! was rigorously analyzed in Ref.@4# and
was shown to be well posed, that is to possess a un
classical solution. Moreover, it was shown that for any fin
value of the ‘‘funneling’’ parameterb, the value of the lim-
iting current in the system is 2/d, that is, the one for a ho
mogeneous membrane. This result is easily recovered by
spection. Indeed, the limiting current is that current value
which the lowest interface concentration atx5d, y50 van-
ishes. On the other hand, by inspection, the flat o
dimensional concentration distribution,

c~x,y!512
x

d
, ~39!

with an identically vanishing interface concentration atx
5d is a solution to Eqs.~35!–~38! ~unique by Ref.@4#! cor-

responding to the limiting currentI lim5
def

i limh52/d. Given
this result for any finiteb, the natural question to be ad
dressed is how does, for a vanishingb, the limiting current
acquire its low ‘‘heterogeneous’’ value. The answer to th
question is provided by the following asymptotic reasoni
valid for b→0 and based too upon the analysis of Ref.@4#.
Let I h

lim be the limiting current at the unmodified heterog
neous membrane. Forb→0 and I<I h

lim , the concentration
distribution at a modified membrane is identical to that at
unmodified one. Forb→0 andI .I h

lim , the interfacex5d is
split, by some pointy0(I ), into the following two parts. To
the left of y0(I ) the interface concentration essentially va
ishes whereas, to the right ofy0(I ), the surface modification
is not sensed. The position of the ‘‘interface free bounda
y0(I ) is determined from the current conservation in the s
tem. The BVP~35!–~38! is asymptotically reduced to that fo
an unmodified heterogeneous membrane forI<I h

lim and to
the following interface free boundary problem forI .I h

lim :

0,x,d, 0,y,1, Dc50, ~40!
7-6
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x50, 0,y,1, c~0,y!51, ~41!

x5d, 0,y,y0~ I !, c~d,y!50, ~42!

x5d, y0~ I !,y,1, cx~d,y!52H i /2, 0,y,h,

0, h,y,1,
~43!

0,x,d, y50,1, cyuy50,150, ~44!

E
0

1

c~d,y!dy512
Id

2
~ I 5

def

ih !. ~45!

Here Eq.~45! is the current conservation condition obtain
by integration of Eq.~40! over the range 0,y,1, taking
into account Eqs.~38!, and integrating the resulting equatio
twice over the range 0,x,d, taking into account Eqs.~36!,
~37!. Equation~45! is employed for determination ofy0(I ).
With I increasing in the rangeI h

lim,I ,2/d, y0(I ) monotoni-
cally increases, until reaches 1 forI 52/d ~limiting current
through a homogeneous membrane!.

The interface free boundary problem~40!,~45! represents
the leading order outer limiting problem of the bounda
singular perturbation problem~35!–~38!. In order to be able
to recover the full voltage/current curve~and not only the
value of the limiting current and the concentration where
it is not too low! one has to consider the respective inn
problem, namely, the one determining the low interface c
centrationcI (d,y)5o(1) in the interval 0,y, y0(I ), ap-
proximated in the outer problem by a sheer zero. When
low inner concentrationcI (d,y) is found, the voltageV in the
system may be identified, in accordance with Eq.~20! as
ln cI(d,0). The inner interface concentrationcI (d,y) is found
from the free boundary condition~37!, rewritten as

b@ ln cI ~d,y!#yy2cx~d,y!5H i /2, 0,y,h,

0, h,y,1.
~46!

Here b ln cI5O(1) @ ln cI5O(1/b)# and cx(d,y)5O(1) is
taken from the solution of the outer problem~40!–~45!.

As a convenient first approximation~see the Appendix!
one may use forcx(d,y) the expression

cx~d,y!52
1

d
. ~47!

Substitution of Eq.~47! into ~46! yields for cI (d,y) a simple
differential equation

buyy5a~ i ,y!, ~48!

where

u~y!5
def

cI ~d,y!, ~49!

a5
def

2
1

d
1H i /2, 0,y,h,

0, h,y,1.
~50!
04150
r
r
-

is

Explicit integration of Eq.~48!, with boundary conditions

uy~0!50, ~51!

u~y0!50, ~52!

following, respectively, from the first of symmetry cond
tions ~44! and the equality lncI(d,y0)5O(1/b), yields u
5u(y,i ,b). This, in turn, yields an analytic expression fo
the voltage/current curve, given by the relation

V52u~0,i ,b!. ~53!

~See the Appendix for an explicit formula.! In Fig. 8 we
compare aVC curve recovered from a numerical solution
the full two-layer formulation~3!–~20! with that obtained
from a much simpler, but still numerical, solution of th
limiting ‘‘funnel’’ problem ~40!–~45!. ~For the respective 2D
concentration distributions see Figs. 7 and 9.! In Fig. 10 we
compare this latterVC curve with that obtained from an
approximate analytic solution of the interface free bound
problem~40!–~53!.

IV. DISCUSSION: PHYSICAL MECHANISM
OF ION-EXCHANGE FUNNELING

Our message in this paper to a general physical audie
interested in interface transport is not, of course, the po

FIG. 8. CalculatedVC curves of a modified membrane. ,
two-layer model («50.1. N50.01, h50.5, d51); , limiting
‘‘funnel’’ model (b50.001,h50.5, d51).
7-7
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bility to reduce concentration polarization at a heterogene
membrane by a polyelectrolyte coating of the latter. Suc
message would be more appropriate for a membranolog
journal. The message is that a very classical kinematic p
lem of two-dimensional steady state electrodiffusion ont
nonuniform surface from a region with a peculiar geome
may be reduced, through a suitable asymptotic treatmen
an even more classical simple diffusion problem in a reg
with a trivial geometry. In this latter problem all peculiaritie
of the original problem are concentrated in a single, app
ently very simple, singularly perturbed nonlinear bounda
condition ~37!. Singularity lies in the fact that an arbitraril
small perturbation of this kind yields, through a particu
nonlinear mechanism, a large effect upon the ionic trans
in terms of the limiting current—a situation reminiscent
the viscous drag resolution of the D’Alambert paradox in
high Reynolds number potential flow around a symme
body. Having said this, let us recapitulate the major fa
referred to above and throughout this paper and close wi
semantic comment.

The ac or infinitesimal dc current resistance of a hete
geneous electrodialysis membrane is determined by perc
tion of the ion-exchange beads in it’s bulk. At the same tim
the finite dc current resistance of a heterogeneous memb
is dominated by concentration polarization. This latter is

FIG. 9. 2D concentration distribution in the limiting~funnel!
model. ~a! b50, h50.5, d51, I 5I lim51.46; ~b! b50.001, h
50.5, d51, I 5I lim5I h

lim52.
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termined by the geometry of alternating ion conductive a
insulating regions at the membrane’s surface in relation
the width of the depleted diffusion layer of the surroundi
electrolyte. The major quantitative characteristic of this
concentration polarizability of a heterogeneous membran
the value of the limiting current through it compared to th
through a homogeneous membrane. Remarkably, a very
coating of a heterogeneous membrane by a slightly char

FIG. 10. CalculatedVC curves in the limiting~funnel! model.
, b50.001, h50.5, d51; —•—, b50, h50.5, d51;

, approximate formula~A7!.

FIG. 11. y0(I ) plot. , numerical solution; , approxi-

mate formula~A6!.
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homogeneous ion-exchange layer brings the limiting curr
to a value typical of a homogeneous membrane. In this pa
we termed this effect ‘‘ion-exchange funneling.’’ We wish
comment now on this term.

The lateral counter-ion flux along the membrane surf
from the insulating to the conductive part of it isj 152py
2pwy ~or, respectively, j 152cy2cwy for the solution
layer adjacent to a heterogeneous membrane!.

Why is the counterion transport in the coating so mu
more effective than that in the solution layer of a simi
thickness? Let us point out first that, by Eqs.~20!,~29!, the
counter-ion gradient in the coating, the concentration gra
ent near the interface, and the electric potential grad
therein are of the same order of magnitude:

upyu;ucyu;uwyu.

On the other hand, for«→0, N→`, so thatb5«N5const
5O(1), the migrational counterion flux component in th
coating will beN times larger than any other flux compone
~either diffusional one in the coating or diffusional and ele
tromigrational one in a solution layer near an unmodifi
heterogeneous membrane!. Thus, a lateral concentration dro
from the insulating to a conductive part of a heterogene
membrane surface produces a respective lateral electric
tential drop which, in turn, yields a major electromigration
counterion flow towards the ‘‘ionic gates’’ to the membran
This is reminiscent of a funnel conducting the liquid co
lected at its surface to the orifice: the analogy that sugge
the term ‘‘ion-exchange funneling.’’
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APPENDIX: APPROXIMATE SOLUTION OF THE
LIMITING „FUNNEL … PROBLEM FOR SMALL VALUES

OF FUNNELING PARAMETER

Below we outline the construction of an approximate s
lution to the limiting problem~35!–~38!, and of the respec-
tive voltage/current curve, valid for small values of the fu
neling parameterb. We start with an approximate solution t
the mixed limiting BVP~40!–~44! ~with a fixedy0) provided
by the first approximation of the Schwarz alternating pro
dure @5#. For this purpose, the Laplace equation~40! is first
solved in the ‘‘full’’ domain 0,x,d, 0,y,1 with bound-
ary conditions~41!,~43!,~44! and condition~42! applied on
the entire interfacex5d, 0,y,1. This yields the one-
dimensional ‘‘flat’’ concentration distribution~39!. Next, Eq.
~40! is solved by separation of variables in the ‘‘right’’ sub
region 0,x,d, y0,y,1 with boundary conditions~41!,
~43! and @see Eqs.~39!,~44!#

cy
(2)~x,1!50, ~A1!

c(2)~x,y0!512
x

d
. ~A2!

The solution reads
c(2)~x,y!

55
12

x

d
1 (

n51,3,5, . . . ,

8~12y0!

p2n2d

1

cosh$dpn/@2~12y0!#%
sinS pn@y2y0#

2~12y0! D sinhS pnx

2~12y0! D
for I such that y0~ I !>h,

12
x

d
1 (

n51,3,5, . . . ,

8~12y0!

p2n2 F1

d
2

i

2 S 12cos
pn~h2y0!

2~12y0! D G 1

cosh$dpn/@2~12y0!#%
sinS pn@y2y0#

2~12y0! D sinhS pnx

2~12y0! D
for I such that y0~ I !P~0,h!.

~A3!

Substitutingx5d into Eq. ~A3! we find

c(2)~d,y!

55 (
n51,3,5, . . . ,

8~12y0!

p2n2d
tanhS pnx

2~12y0! D sinS pn@y2y0#

2~12y0! D for I such that y0~ I !>h,

(
n51,3,5, . . . ,

8~12y0!

p2n2 F1

d
2

i

2 S 12cos
pn~h2y0!

2~12y0! D G tanhS pnx

2~12y0! D sinS pn@y2y0#

2~12y0! D for I such that y0~ I !P~0,h!.

~A4!
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Substitution of Eq.~A4! into Eq. ~45! yields

(
n51,3,5, . . . ,

16~12y0!2

p3n3d
tanh

pnd

2~12y0!
512

Id

2
for I such that y0~ I !>h,

(
n51,3,5, . . . ,

16~12y0!2

p3n3 F1

d
2

i

2 S 12cos
pn~h2y0!

2~12y0! D G tanhS pnd

2~12y0! D512
Id

2
for I such that y0~ I !P~0,h!. ~A5!

Equation~A5! yields y0(I ) in the form

y0~ I !'5
12

p

4
ApdS 12

Id

2 D for I>I 1def
5 2

d F12
16

p3
~12h!2G

12F I

p

h21

h
2A I 2

p2 S h21

h D 2

2S Id

2
212

I

ph
~h21!2D S 16

p3d
2

I

phD 2G
/S 16

p3d
2

I

phD for I 0
lim<I<I 1.

~A6!

In Fig. 11, thus calculatedy0(I ) is compared with that found numerically from a numerical solution of the interface
boundary problem~40!–~45!. The construction of approximate voltage/current curve is completed by employing the calc
y0(I ) in solution of BVP~48!–~52!, yielding, in accordance with Eq.~53!,

V'
1

2b 5 S I

h
2

2

d D S hy0~ I !2
h2

2 D2
1

d
~y02h!2 for I>I 1,

y0
2~ I !

2 S I

h
2

2

d D for I 0
lim<I<I 1.

~A7!
of
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